研究方向

钙钛矿太阳能电池,光电转换器件。


针对钙钛矿前沿领域展开研究:如表界面结构、能带弯曲、表面态分布性质;表界面化学反应过程;化学组分调控工程;器件载流子动力学过程以及稳定性研究等方面。(新能源材料研究所——高学平课题组)


具体方向:单晶、旋涂小面积、刮涂大面积、封装、稳定性以及铅泄露研究。


同时欢迎 有机分子合成——单分子自组装层合成经验的同学加入。


其他兴趣研究:半导体中的电子行为,电子-光子行为。


欢迎有兴趣的伙伴(本科生、硕士研究生)加入,一起成长,一起见证!


欢迎参加南开夏令营面试的同学提前联系!

2025年硕士研究生欢迎报名!

欢迎有化学、材料相关背景OR半导体物理相关背景的同学加入,请发邮件联系!

学生可能就业去向:1.读博;2.进入导师内推钙钛矿企业;3.半导体相关领域;4.材料化学相关领域;5.设备研发相关领域



个人简历

2011-2015,南开大学化学学院材料化学,理学学士(双经济学学士)

2015-2020,中国科学院物理研究所,清洁能源实验室,理学博士

2020.12-至今,南开大学材料科学与工程学院,特聘副研究员(高学平课题组)


主持国家自然科学基金青年基金一项,并参与多个科研项目。截止2024年,已在Advanced MaterialsAdvanced Energy Materials, Small,  Science China系列, Nano Energy等期刊发表SCI论文26篇。担任Journal of Materials Chemistry A, RSC Advances等期刊的审稿人。担任eScience青年编委。


代表性成果

已发表(或正式接受)的学术论文:

1.         Lou, T.+; Chen, L.+; Yang, G.; Chen, P.; Zhao, W.; Li, H.*; Li, G., Unraveling the Colloidal Composition of Perovskite Precursor Solutions and Its Impact on Film Formation. Science China Materials, 2024, 10.1007/s40843-024-3189-1.

2.         Li, H.*; Liu, S., Revolutionary SAMs: Transforming Inverted Perovskite Solar Cells. Journal of Materials Chemistry A, 2024, 12, 9929.

3.         Chen, L.+; Chen, L.+; Chen, Z.; Wu, J.; Lou, T.; Li, Y.; Zhou, Z.; Li, H.*; Li, G.; Meng, Q., Ionic Bonding Without Directionality Facilitates Efficient Interfacial Bridging for Perovskite Solar Cells. Small, 2024, 20, 2308964.

4.         Li, H.; Liu, Z.; Chen, Z.; Tan, S.; Zhao, W.; Li, Y.; Shi, J.; Wu, H.; Luo, Y.; Li, D. *; Meng, Q. *, Reconfiguring perovskite interface via R4NBr addition reaction toward efficient and stable FAPbI3-based solar cells. Science China Chemistry, 2022, 65, 1185-1195.

5.         Li, H.+; Shi, J.+; Deng, J.; Chen, Z.; Li, Y.; Zhao, W.; Wu, J.; Wu, H.; Luo, Y.; Li, D.*; Meng, Q.*, Intermolecular π-π conjugation self-assembly to stabilize surface passivation of highly efficient perovskite solar cells. Advanced Materials, 2020, 32, 1907396.

6.         Li, H.; Zhang, R.; Li, Y.; Li, Y.; Liu, H.; Shi, J.; Zhang, H.; Wu, H.; Luo, Y.; Li, D.*; Li, Y.*; Meng, Q.*, Graphdiyne-based bulk heterojunction for efficient and moisture-stable planar perovskite solar cells. Advanced Energy Materials, 2018, 8 (30), 1802012.

7.         Li, H.; Li, Y.; Li, Y.; Shi, J.; Zhang, H.; Xu, X.; Wu, J.; Wu, H.; Luo, Y.; Li, D.*; Meng, Q.*, Synergistic effect of caprolactam as lewis base and interface engineering for efficient and stable planar perovskite solar cells. Nano Energy, 2017, 42, 222-231.

8.         Kou, C.+; Feng, S.+;Li, H.; Li, W.*; Li, D.; Meng, Q.*; Bo, Z.*, Molecular “flower” as the high-mobility hole-transport material for perovskite solar cells. ACS Applied Materials & Interfaces, 2017, 9 (50), 43855-43860.

9.         Yu, B.; Zhang, H.; Wu, J.; Li, Y.; Li, H.; Li, Y.; Shi, J.; Wu, H.; Li, D.; Luo, Y.*; Meng, Q.*, Solvent-engineering toward CsPb(IxBr1x)3 films for high-performance inorganic perovskite solar cells. Journal of Materials Chemistry A, 2018, 6 (40), 19810-19816.

10.     Wu, J.; Shi, J.; Li, Y.; Li, H.; Wu, H.; Luo, Y.; Li, D.; Meng, Q.*, Quantifying the interface defect for the stability origin of perovskite solar cells. Advanced Energy Materials, 2019, 9 (37), 1901352.

11.     Li, Y.; Shi, J.+; Yu, B.; Duan, B.; Wu, J.; Li, H.; Li, D.; Luo, Y.; Wu, H.; Meng, Q.*, Exploiting electrical transients to quantify charge loss in solar cells. Joule, 2020, 4 (2), 472-489.

12.     Li, Y.; Li, Y.; Shi, J.; Li, H.; Zhang, H.; Wu, J.; Li, D.; Luo, Y.; Wu, H.; Meng, Q.*, Photocharge accumulation and recombination in perovskite solar cells regarding device performance and stability. Applied Physics Letters, 2018, 112 (5), 053904.

13.     Wu, J.; Cui, Y.; Yu, B.; Liu, K.; Li, Y.;Li, H.; Shi, J.; Wu, H.; Luo, Y.; Li, D.*; Meng, Q.*, A simple way to simultaneously release the interface stress and realize the inner encapsulation for highly efficient and stable perovskite solar cells. Advanced Functional Materials, 2019, 29 (49), 1905336.

14.     Wu, J. ; Li, Y.; Tan, S; Yu, B.; Li, H.; Li, Y.; Shi, J.*; Wu, H.; Luo, Y.; Li, D.; Meng, Q.*, Enhanced Perovskite Solar Cell Efficiency Via the Electric-Field-Induced Approach. ACS Applied Materials & Interfaces, 2020, 12, 24, 27258–27267.

15.     Wang, H.; Zhao, J.; Li, Y.; Zou, Y.; Yu, M; Hao, M.; Li, Y.;Li, H.; Qin, Y.*; Mu, C; Li, D.; Ai, X.*; Meng, Q.; Zhang, J., Diffusion Dynamics of Mobile Ions Hidden in Transient Optoelectronic Measurement in Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3(9), 8330–8337.

16.     Song, J.; Zhao, L.; Huang S.; Yan X.; Qiu Q.; Zhao L.;Zhu L.; Qiang Y.; Li, H.; Li, G.*, A pp+ homojunction enhanced hole transfer in inverted planar perovskite solar cells. ChemSusChem, 2021, 14, 1396.

17.     Zhao, W.; Shi, J.; Tian, C.; Wu, J.; Li, H.; Li, Y.; Yu, B.; Luo, Y.; Wu, H.; Xie, Z.; Wang, C.; Duan, D.; Li, D. *; Meng, Q. *, CdS Induced Passivation toward High Efficiency and Stable Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13(8), 9771–9780.

18.     Zhang, R.; Shao, J.; Yu, B.; Li, H.; Zhong, Y.; Shi, J.; Luo, Y.; Wu, H.; Li, D.; Meng, Q. *, A new molecular material as a dopant-free hole-transporting layer for stable perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 4291-4299.

19.     Yang, Y.; Chen, P.; Zhao, Q.; Li, H.; Li, G. *; Gao, X., The isostructural substitution-induced growth mechanism of rutile TiO2 electron transport layer and the dominant distribution for efficient carbon-based perovskite solar cells. Solar RRL, 2021, 5, 2100307.

20.     Yang, Y.; Chen, P.; Li, H.; Zhao, Q.; Li, T.; Wu, Y.; Zhang, Y.; Gao, X.; Li, G. *, Reversible Degradation in Hole Transport Layer-Free Carbon-Based Perovskite Solar Cells. Solar RRL, 2022, 6, 2200281.

21.     Yang, Y.; Wang, D.; Li, Y.*; Xia, J.; Wei H.; Ding C.; Hu, Y.; Wei, Y.; Li, H.; Liu, D.;Shi, G.; Zhang, Y.; Bi, H.; Chen, S.; Li, H.; Meng, X.; Hayase, S.; Shen, Q.*, In Situ Room-Temperature Synthesis of All-Colloidal Quantum Dot CsPbBr3−PbS Heterostructures. ACS Photonics, 2023, 10, 12, 4305–4314.

22.     Li, L.; Wang, D.; Yang, Y.; Ding, C.; Hu, Y.; Liu, F.; Wei, Y.; Liu, D.; Li, H.; Shi, G.; Chen, S.; Li, H.; Fuchimoto, A.; Tosa, K.; Hiroki, U.; Hayase, S.*; Wei, H.*; Shen, Q.*, Stable Inorganic Colloidal Tin and Tin–Lead Perovskite Nanocrystals with Ultralong Carrier Lifetime via Sn(IV) Control. J. Am. Chem. Soc.,2024, 146, 3094-3101.

23.     Zhang, Z.; Shi, Y.; Chen, J.; Shen, P.; Li, H.; Yang, M.; Wang, S.; Li, X.; Zhang, F.*, Preventing lead leakage in perovskite solar cells and modules with a low-cost and stable chemisorption coating. Materials Horizons 2024, 11, 2449-2456.

24.     Wang, D.; Li, Y.*; Yang Y.; Ding C.; Wei, Y.; Liu, D.; Li, H.; Bi, H.; Chen, S.; Ji, S.; Zhang, B.; Guo, Y.; Wei, H.; Li, H.; Hayse, S.; Shen, Q.*, Energetic disorder dominates optical properties and recombination dynamics in tin-lead perovskite nanocrystals. eScience, 2024, 100279.

25.     Wang, D.; Li, Y.*; Yang Y.; Guo, Y.; Wei, H.; Liu, F.; Ding, C.; Wei, Y.; Liu, D.; Li, H.; Shi, G.; Chen, S.; Li, H.; Fuchimoto, A.; Xia, J.*; Hayse, S.; Shen, Q.*, Deciphering the atomic-scale structural origin for photoluminescence quenching in tin–lead alloyed perovskite nanocrystals. ACS Nano, 2024, 18, 19528−19537.

26.     Li, Y.+; Jiang, J.+; Wang, D.+; Liu, D.;Yajima, S.; Li, H.; Fuchimoto, A.; Li, H.; Shi, G.; Hayase, S.; Tao, S. *; Shi, J.; Meng, Q. *; Ding, C. *; Shen, Q. *, Eectronic coupling between perovskite nanocrystal and ullerene modulates hot carrier capture. Advanced Functional Materials, 2024, 2415735.