研究方向
  • 分子筛的合成与表征

  • 分子筛基多相催化反应

  • 原位谱学技术研究



个人简历

个人简况:

戴卫理,研究员/博士生导师,国家级青年人才(教育部),南开大学“百名青年学科带头人”。2012年博士毕业于南开大学,随后在南开大学从事科研工作。近年来,一直从事分子筛催化反应的研究工作,发展了多种原位谱学耦合技术,实现了分子筛催化反应过程的在线监测,阐述了催化反应机理,指导了多种高效分子筛催化剂的设计。以通讯/第一作者身份在Nat. Commun., J. Am. Chem. Soc.,  Angew. Chem. Int. Ed.,  ACS Catal.(11篇),J. Catal.等催化类学术期刊上发表论文40篇,参与学术著作1本。获得20项授权中国发明专利。


详见个人主页:http://nankai.teacher.360eol.com/teacherBasic/preview?teacherType=&teacherId=6009


教育、科研经历:

2021年12月-至今-南开大学材料科学与工程学院 研究员

201601-202112-南开大学材料科学与工程学院 副研究员

201709-201808-德国斯图加特大学 访问学者

201607-201608-德国斯图加特大学 短期访问

201506-201512-南开大学材料科学与工程学院 助理研究员

201311-201401-德国斯图加特大学 短期访问

201207-201505-南开大学化学学院 博士后

201010-201109-德国斯图加特大学化工研究所 联合培养

200709-201206-南开大学化学学院 工学博士

200309-200706-华中农业大学食品科技学院 理学学士


荣誉与奖励:

2013年获得“南开大学优秀博士论文奖”;

2013年入选“天津市优秀博士后国际化培养”项目;

2016年入选天津市创新人才推进计划-青年科技优秀人才”;

2017年入选天津市“131”创新型人才培养工程第三层次人选;

2017年获得“中国催化新秀奖

2018年入选“南开大学百名青年学科带头人培养计划”;

2023年入选“国家级青年人才(教育部)。


学术兼职:

2017-至今,担任Chinese Journal of Catalysis(催化学报)第五和第六届青年编委;

2022-至今,担任《石油学报(石油加工)》首批青年编委;

2022-至今,担任Advanced Powder Materials期刊青年科学家委员会委员;

2023-至今,担任《物理化学学报》青年编委;

2023-至今,担任《结构化学》青年编委;

2021-至今,担任中国青年催化会学术委员会委员。


科研项目情况:

1.国家重点研发计划子课题任务,2023-2027,主持

2.国家自然科学基金面上项目,2023-2026,主持

3.国家重点研发计划子课题任务,2022-2026,主持

4.国家自然科学基金面上项目,2020-2023,主持

5.南开大学百青人才A类项目,2023-2027,主持;

6.南开大学百青人才B类项目,2019-2024,主持

7.中石化北京石油化工研究院委托项目,2020-2022,主持

8.北京低碳清洁能源研究院委托项目,2020-2022,主持

9.天津市“131”创新型人才团队建设项目,2021-2024,骨干

10.南开大学百青团队项目,2021-2023,骨干



-

代表性成果

     专著章节:

[1] Weili dai, Liu Yang, Guangjun Wu, Niajia Guan, Landong Li. in "Heterogeneous Catalysis for Sustainable Energy": Chapter 10, Methanol to Hydrocarbons conversion. 2022, 351-389

期刊论文:

[1] Tingting Yan, Mengting Zhang, Runze Liu, Weili Dai*, Naijia Guan, Landong Li*. Acetone–Butanol–Ethanol Catalytic Upgrading into Aromatics over Ga-Modified HZSM-5 Zeolites. ACS Catalysis, 2023, 13, 7087.

[2] Chang Wang, Liu Yang, Mingbin Gao, Xue Shao, Weili Dai*, Guangjun Wu, Naijia Guan, Zhaochao Xu, Mao Ye, Landong Li*. Directional Construction of Active Naphthalenic Species within SAPO-34 crystal toward More Efficient Methanol-to-Olefins Conversion. Journal of the American Chemical Society, 2022, 144, 21408.

[3] Liu Yang, Chang Wang, Weili Dai*, Guangjun Wu, Naijia Guan, Landong Li*. Progressive steps and catalytic cycles in methanol-to-hydrocarbons reaction over acidic zeolites. Fundamental Research, 2022, 2, 184.

[4] Liu Yang, Chang Wang, Lina Zhang, Weili Dai*, Yueying Chu, Jun Xu, Guangjun Wu, Mingbin Gao, Wenjuan Liu, Zhaochao Xu, Pengfei Wang, Naijia Guan, Michael Dyballa, Mao Ye, Feng Deng, Weibin Fan, Landong Li. Stabilizing the Framework of SAPO-34 Zeolite toward Long-term Methanol-to-olefins Conversion. Nature Communications, 2021, 12, 4661.

[5] Yuchao Chai, Weili Dai, Guangjun Wu, Naijia Guan, Landong Li*.Confinement in Zeolite and Zeolite Catalysis, Accounts of Chemical Research, 2021, 54, 2894.

[6] Pieter Cnudde, Evgeniy A. Redekop, Weili Dai, Natale G. Porcaro, Michel Waroquier, Silvia Bordiga, Michael Hunger, Landong Li, Unni Olsbye and Veronique Van Speybroeck. Experimental and Theoretical Evidence for the Promotional Effect of Acid Sites on the Diffusion of Alkenes through Small-Pore Zeolites. Angewandte Chemie International Edition. 2021, 60,10016.

[7] Weili Dai, Qifeng Lei, Guangjun Wu, Naijia Guan, Michael Hunger, and Landong Li*, Spectroscopic Signature of Lewis Acidic Framework and Extraframework Sn Sites in Beta Zeolites. ACS Catalysis, 2020, 10, 14135

[8] Tingting Yan, Liu Yang, Weili Dai*, Guangjun Wu, aijia Guan, Michael Hunger, Landong Li*. Cascade Conversion of Acetic Acid to Isobutene over Yttrium-modified Siliceous Beta Zeolites, ACS Catalysis, 2019, 9, 9726

[9] Liu Yang, Tingting Yan, Chuanming Wang, Weili Dai*, Guangjun Wu, Michael Hunger, Weibin Fan, Zaiku Xie, Naijia Guan, and Landong Li*. Role of acetaldehyde in the roadmap from initial carbon-carbon bonds to hydrocarbons during methanol conversion, ACS Catalysis, 2019, 9, 6491

[10] Tingting Yan, Weili Dai*, Guangjun Wu, Swen Lang, Michael Hunger, Naijia Guan, Landong Li*Mechanistic Insights into One-Step Catalytic Conversion of Ethanol to Butadiene over Bifunctional Zn–Y/Beta Zeolite. ACS Catalysis, 2018, 8, 2760.

[11] Weili Dai, Liu Yang, Chuanming Wang, Xin Wang, Guangjun Wu, Naijia Guan, Ultz Obenaus, Michael Hunger, and Landong Li*, Effect of n-Butanol Cofeeding on the Methanol to Aromatics Conversion over Ga-Modified Nano H-ZSM-5 and Its Mechanistic InterpretationACS Catalysis, 2018, 8, 1352

[12] Tingting Yan, Liu Yang, Weili Dai*, Chuanming Wang, Guangjun Wu, Naijia Guan, Michael Hunger, Landong Li*, On the deactivation mechanism of zeolite catalyst in ethanol tobutadiene conversion, Journal of Catalysis, 2018, 8, 7.

[13] Weili Dai, Shanshan Zhang, Zhiyang Yu, Tingting Yan, Guangjun Wu, Naijia Guan, and Landong Li*, Zeolite Structural Confinement Effects Enhance One-Pot Catalytic Conversion of Ethanol to Butadiene. ACS Catalysis, 2017, 7, 3703.

[14] Weili Dai, Chuanming Wang, Bo Tang, Guangjun Wu, Naijia Guan, Zailku Xie,* Michael Hunger, Landong Li*. Lewis acid catalysis confined in zeolite cages as a strategy for sustainable het-erogeneous hydration of epoxides. ACS Catalysis, 2016, 6, 2955.

[15] Weili Dai, Chuanming Wang, Xinfeng Yi, Anmin Zheng, Landong Li*, Guangjun Wu, Naijia Guan, Zaiku Xie*, Mchael Dyballa, Michael Hunger*, Identification of tert-butyl cations in zeolite H-ZSM-5: Evidence from solid-state NMR spectroscopy and DFT calculations, Angewandte Chemie International Edition, 2015, 54, 8783.

[16] Weili Dai, Chuanming Wang, Michael Dyballa, Guangjun Wu, Naijia Guan, Landong Li*, Zaiku Xie, Michael Hunger*. Understanding the Initial Stages of the Methanol-to-Olefin Conversion on H-SAPO-34. ACS Catalysis, 2015, 5, 317.

[17 Weili Dai, Xiaoming Sun, Bo Tang, Guangjun Wu, Landoong Li*, Naijia Guan, Michael Hunger*. Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13. Journal of Catalysis, 2014, 314,10.

[18] Weili Dai, Guangjun Wu, Landong Li*, Naijia Guan, Michael Hunger*. Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts. ACS Catalysis, 2013, 3, 588.

[19] Weili Dai, Xin Wang, Guangjun Wu, Naijia Guan, Michael Hunger, Landong Li*. Methanol-to-olefin conversion on silicoaluminophosphate catalysts: Effect of Brønsted acid sites and framework structures. ACS Catalysis, 2011, 1, 292.