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Carbon-free sandwich compounds based  
on arsenic and antimony with icosahedral 
metal cores

Xu-Hui Yue1,6, Wei-Xing Chen1,6, Tao Yang2, Alvaro Muñoz-Castro3, 
Gernot Frenking    4,5 & Zhong-Ming Sun    1 

Traditionally, a metallocene complex comprises a metal centre sandwiched 
between two aromatic organic ligands and such complexes have been 
extensively investigated. Carbon-free analogues of metallocene with 
homoleptic As5 or Sb5 ligands, however, have remained experimentally  
elusive, especially analogues of higher nuclearity. Here we report  
the synthesis and characterization of sandwich-type clusters  
[Pn@M12Pn10(Pn5)2]4–/5– (Pn = As, Sb; M = Co, Fe), where the endohedral 
icosahedral cluster [Pn@M12] can be regarded as a spherical-like three-
dimensional coordination centre surrounded by a Pn10 ring and two Pn5 
pentagonal caps. Quantum chemical calculations reveal that the [Pn@M12] 
has orbitals that mimic 1S, 1P and 1D electronic shells, which can interact 
with the outer (Pn5)2 ring layer. These interactions occur because the frontier 
orbitals are dominated by the (n − 1)d block orbitals of the metal atoms.  
The π1-As5 orbitals interact with 1S and part of the 1P shell of the central core, 
while the π2- and π3-As5 orbitals interact with the symmetry-allowed part 
of the 1P and 1D shells. The characteristics of this orbital interaction are 
analogous to those of mononuclear metallocenes.

Ferrocene (I in Fig. 1) and its derivatives, namely metallocenes, with 
sandwich-type structures comprising a mononuclear metal cen-
tre between two organic conjugated ligands, have been intensively 
investigated1–4. Metallocenes have been widely used in the fields of catal-
ysis, medicine, batteries and other materials science applications5–9. 
Subsequently, studies have extended the range of sandwich complexes 
to species with carbon-free inorganic ligands. The replacement of CH 
fragments in cyclopentadiene by isoelectronic phosphorus or arsenic 
atoms leads to heterocyclopentadienyl [(RC)nP5−n]– ligands (n = 0–4), 
which have markedly different chemical properties compared to 
their all-carbon analogues and can be used to construct a series of 
heteroferrocenes10–17. These kinds of complexes could serve as efficient 

starting materials for the syntheses of diverse organometallic com-
pounds and show activity in catalysis18.

Although mixed-sandwich complexes have long been isolated, 
attempts to synthesize a carbon-free all-phosphorus metallocene 
failed until [Ti(η5-P5)2]2– (II in Fig. 1), which has enhanced π-acceptor 
properties compared with all-carbon analogues19. Very recently, the 
all-phosphorus sandwich complex [Fe(η4-P4)2]2– has been proved to be 
the closest ferrocene analogue so far to the decaphosphaferrocene20. 
In contrast, in the case of the heavier analogues of group 15, arse-
nic and antimony, the difficulties are more pronounced, and thus 
only a few pentaarsaferrocene derivatives [(η5-As5)Fe(η5-C5Me4R)] 
(R = Me, Et) (III in Fig. 1) with one η5-bonded cyclo-As5

– ligand21 and 
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5–, respectively. Correspondingly, under similar reaction conditions, 
the Fe/Sb binary sandwich-type [Sb@Fe12Sb10(Sb5)2]5– (3a) along with 
‘onion-type’ [Sb@Fe12@Sb20]5– (3b) anions co-crystallized in the salt 
of [K3(18-crown-6)3(en)2][K(18-crown-6)(en)]23a0.7453b0.255 (3′) (Sup-
plementary Figs. 7–9). This compound was successfully isolated on 
reaction of K5Sb4 and 1,1′-bis(diphenylphosphino)ferrocene (DPPF), 
resulting in black block crystals with approximately 15% yield. In addi-
tion, when ferrocene instead of DPPF was used as starting reagent, no 
crystals of 3′ are isolated under the same conditions.

Characterization
Single-crystal X-ray diffraction reveals that all anionic clusters crystal-
lize in the triclinic space group P ̄1 (see Supplementary Tables 1–4 for 
detailed crystallographic data and bond parameters). It is worth noting 
that the above isolated species 1–3a are isostructural; clusters 1 and 2 
have minor differences in bond lengths (Supplementary Tables 2 and 
3), and thus the following discussion will mainly focus on cluster 2. 
Cluster anion 3a together with 1 and 2 can be interpreted overall as 
sandwich complexes with D5d-symmetry, where the endohedral icosa-
hedron [Pn@M12] (Pn = As, Sb; M = Co, Fe) serves as a cluster-based 
coordination centre, located between two staggered cyclo-Pn5 ligands, 
which is further surrounded by an equatorial puckered Pn10 ring  
(Fig. 2a–c). In the case of 3b, this core–shell geometry is isostructural 
with the known ‘onion-type’ or ‘matryoshka-type’ clusters of formula 
[E@M12@E20]n– (E = As, Sb, Sn; M = Ni, Pd, Cu; n = 3, 4, 12)31–34. Neither 
endohedral Co12 nor Fe12 icosahedral structures appear to have been 
synthesized in the solid state, although it has bee predicted theoreti-
cally that such clusters may be stable35,36.

In the [As@Co12] and [Sb@Fe12] subunits, the Co‒Co and  
Fe‒Fe bond distances fall in narrow ranges of 2.627(2)–2.696(2) Å and 
2.609(2)–2.638(2) Å, respectively, showing an almost ideal icosahedron 
with Ih symmetry (Fig. 2h). The average heights d (namely, the distances 
between the two capping atoms of the bicapped pentagon antiprism) 
of the icosahedra are almost identical (dCo = 5.059 Å, dFe = 4.984 Å), 
indicating that the closo-polyhedra [As@Co12] and [Sb@Fe12] are simi-
larly sized. In addition, the Co‒As contacts between the central arsenic 
atom and the 12 cobalt atoms (2.4486(16)–2.5541(17) Å) are slightly 
longer than the remaining Co‒As distances (2.356(2)–2.417(2) Å). In 
cluster 1–3a, each of the apical M atoms of the icosahedral core is 
coordinated to the cyclo-Pn5

– ligand via the η5-coordination mode, 
while the other M atoms coordinate only with the four surrounding 
Pn atoms. This is different from 3b and the reported [As@Ni12@As20]3–  
(ref. 31) and [Sb@Pd12@Sb20]n− (n = 3, 4)32,33, in which each of the M atoms 
is coordinated with the surrounding arsenic or antimony atoms via 
the η5-coordination mode. Each triangular face of the icosahedron 

organometallic compounds containing cyclo-As5
– and cyclo-Sb5

– rings 
are known22,23.

Theoretical calculations confirm that homoleptic sandwich-like 
complexes [Ti(Pn5)2]2– and Fe(Pn5)2 (Pn = As, Sb) (IV in Fig. 1) are likely 
to be isolable, which has further stimulated the search for a sandwich 
complex with two cyclo-Pn5

– ligands24,25. The calculations show that 
heavier analogues of group 15 have lower dissociation energy, which 
means that the destabilizing factor will increase, posing a challenge 
to experimental isolation. This is the primary reason why these cyclo-
As5

– or cyclo-Sb5
– flanked compounds via η5-ligated coordination mode 

have so far remained elusive.
The discovery of polymetallic interlayered complexes has 

expanded the new category of sandwich complexes26. Further stud-
ies have found that small carbon ligands are not enough to cover the 
coordination space of the metal centre when the two-dimensional 
interlayer evolves into a three-dimensional (3D) metal cluster27. How-
ever, larger-sized inorganic ligands composed of heavy elements are 
promising for solving the challenge of matching large-sized cores with 
the π orbitals of the cyclo-ligands28–30. Here we report a series of sand-
wich-type complexes [As@Co12As10(As5)2]4–/5– and [Sb@Fe12Sb10(Sb5)2]5– 
(V in Fig. 1) by a Zintl ion synthesis strategy, in which an icosahedral 
cluster core [Pn@M12] (Pn = As, Sb; M = Co, Fe) serves as structural 
support displaying a discrete electronic shell structure involved in the 
stabilization of the outer structural layer, mimicking isolated transi-
tion metals. Interestingly, the cluster exhibits a different geometry 
compared with the known ‘onion-type’ or ‘matryoshka-type’ clusters 
[E@M12@E20]n– (E = As/Sb/Sn, M = Ni/Pd/Cu, n = 3/4/12) with similar 
[E@M12] cores31–34. The outer layer of the former depicts a Pn10 ring 
in the equatorial plane, which is sandwiched between two inorganic 
aromatic cyclo-Pn5

– ligands, while those of the latter can be described 
as undivided E20 shells. This series of complexes represent carbon-free 
sandwich complexes with 3D metal cores, extending the scope of the 
concept of mononuclear sandwich complexes to cluster-coordination-
centred sandwich complexes.

Results and discussion
Synthesis of compounds 1′–3′
The compounds {[K(18-crown-6)]2(en)}2[As@Co12As10(As5)2] (1′) and 
{K2[K(18-crown-6)](en)2}[K(18-crown-6)]2[As@Co12As10(As5)2] (2′) 
were obtained by reacting K5As4 with Co(PPh3)2Cp in ethylenedi-
amine (en) at 75 °C in the presence of 18-crown-6 (Supplementary 
Fig. 1). The compounds were isolated as black plate-like crystals and 
black block crystals with yields of 14% and 12%, respectively. Varia-
tion of molar ratio affords two compounds, [As@Co12As10(As5)2]4– (1) 
and [As@Co12As10(As5)2]5– (2), which carry negative charges of 4– and 
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Fig. 1 | Selected examples of known and predicted sandwich complexes with 
cyclopentadienyl or cyclo-P5, cyclo-As5 and cyclo-Sb5 ligands. I, Fe(η5-C5H5)2 
(ref. 1); II, [Ti(η5-P5)2]2– (ref. 19); III, CpRFeAs5 (CpR = C5Me5,C5Me4Et) (refs. 22,23);  

IV, theoretically predicted sandwich structures [M(Pn5)2]q– (Pn = As, Sb; M = Ti, 
q = 2; M = Fe, q = 0)24,25; V, [Pn@M12Pn10(Pn5)2]q– (Pn = As, M = Co, q = 4, 5; Pn = Sb, 
M = Fe, q = 5).
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is capped by a Pn atom originating from the equatorial Pn10 ring. The 
average bond distance between the apical cobalt and five arsenic atoms 
of the cyclo-As5

– is 2.381(2) Å, which is comparable to that between the 
waist cobalt atoms and the arsenic atoms in the equatorial As10 frag-
ment (average, 2.358(2) Å). However, the distances of the waist cobalt 
atoms of the Co12 icosahedron to the arsenic atoms in the cyclo-As5

– 
(average, 2.298(2) Å) are significantly shorter, indicating that there 
is a strong interaction between the Co12 core and the cyclo-As5 ligand 
in the vertical direction. From another perspective, each Pn atom  
in the Pn5 rings is in a μ2-bridging mode to the M atoms in the  
M12 core, whereas that in the Pn10 ring is in a μ3-bridging mode.  
Although the rotation of the Pn5 rings in 1–3a gives rise to ‘onion-type’ 
[E@M12@E20]n– (E = Sb, M = Fe, 3b; E = As, M = Ni; E = Sb, M = Pd)31–33, the 
bonding conditions are different, and each of the E atoms in E20 coordi-
nates with the M12 nucleus in the μ3-bridging mode. There is a significant 
change in the dimension of these isostructural sandwich compounds 
when the ligand is converted from arsenic to antimony. As shown in 
Fig. 2d–g, there are striking differences in the average Pn‒Pn lengths 
of the cyclo-Pn5

– ligands and the equatorial puckered Pn10 rings and in 
the size of the equatorial ring cavity. In the capping cyclo-As5

– rings in 2, 
the bond distances (2.5447(17)–2.5612(17) Å) fall within a narrow range 
(<0.02 Å) and are longer than those of (η5-As5)Fe(η5-C5Me4Et) (2.316 Å)21. 
The uniform bond distances and bond angles (106.31(6)°–109.49(6)°) 
imply a delocalized aromatic property in the cyclo-As5

– plane. The As‒As  
bonds in the equatorial puckered As10 subunit (average, 2.8018(17) Å)  
are comparable to those in [As@Ni12@As20]3– (average, 2.752 Å)31 
and much longer than that in the two cyclo-As5

– ligands. Such bond 
elongation may be attributed to the high coordination number  
with the [E@M12] core. Moreover, compared to the As‒As distances 

in [As@Ni12@As20]3– (ref. 31) (average, 2.755 Å), the closest distance 
between the As5 ring and equatorial As10 ring (average values of 
3.490(16) Å for 1 and 3.474(19) Å for 2) is much longer, indicating that 
As20 shells in ‘onion-type’ cluster are divided into As5 and As10 fragments 
in anions 1 and 2 to form sandwich-type clusters.

Electrospray ionization mass spectrometry (ESI-MS) of an  
acetonitrile solution of the crystals of {[K(18-crown-6)]2(en)}2 
[As@Co12As10(As5)2] (1′) was performed in negative-ion mode. A series 
of ion peaks [Co12As21]–, [KCo12As21]–, {[K(18-C-6)][Co12As21]}– and  
{[K(18-C-6)]2[Co12As21]}–, containing the parent anion, were found, 
which indicates the high stability of the compound in gas-phase condi-
tions. Additionally, ion peaks losing one or two arsenic atom(s) from 
the parent compound also appeared in the spectrum (Supplementary  
Fig. 10). The elemental composition of compounds 1′–3′ were  
confirmed by means of energy dispersive X-ray (EDX) analyses  
(Supplementary Figs. 16–18). Cluster 1 has 217 total electrons to form  
a paramagnetic complex, but all attempts to obtain the EPR signals 
failed. Theoretical calculations show that this phenomenon is attribu
table to cluster 1 favouring the high-spin S = 7/2 state rather than the 
S = 1/2 state for tetra anions (Supplementary Table 6), and this pheno
menon has also been observed in the known anionic cluster37.

Computational analysis
The structures of 1 and 2 show D5d symmetry due to the spatial dis-
position of the external As20 layer as two As5 rings and an equatorial 
As10 ring, retaining an almost perfect icosahedral [As@Co12] core, as 
denoted by the continuous shape measures38 with an r.m.s. deviation 
of 0.017 Å from a perfect icosahedron. The obtained sandwich-like 
D5d symmetry in 1, in its favoured 7/2 spin state is preferred over the 
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Fig. 2 | Molecular structures of the cluster anions [Pn@M12Pn10(Pn5)2]5– 
(Pn = As, Sb; M = Co, Fe) and their selected fragments. a,b, Solid-state 
structures of anion 2, [As@Co12As10(As5)2]5–, in two different orientations:  
side view (a) and top view (b). c, Solid-state structures of anion 3a,  
[Sb@Fe12Sb10(Sb5)2]5–, in side view. Displacement ellipsoids with 50% probability. 
d–g, The fragments of cyclo-Pn5 (As5, d; Sb5, e) and puckered Pn10 ring  

(side view of As10, f; top view of Sb10, g) in cluster anions 2 and 3a. The numbers 
displayed represent the corresponding selected bond lengths and dimensions 
(average values). h, Space-filling structure of the icosahedral M12 (M = Co, Fe) 
core; their dimensions d are given as average data. As, red; Sb, purple; Co, blue; 
and Fe, orange.
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more spherical Ih symmetry by 31.8 kcal mol−1 due to a more efficient  
bonding towards two As5 units, in contrast to the matryoshka  
[As@Ni12@As20]3− (ref. 31) and [Sn@Cu12@Sn20]12− (ref. 34) inter
metalloids. This situation suggests the plausible description of an 
all-inorganic analogue to metallocenes, involving an [As@Co12] central 
core acting as the coordination centre.

The sandwich-like arrangement of the outer As10(As5)2 shell leads to 
an asymmetric charge distribution, according to the Hirshfeld charge 
analysis, with the equatorial As10 ring carrying −1.31e, and the (As5)2 
fragments carrying an overall charge of −0.72e, denoting less electron-
sharing towards the [As@Co12] (−1.97e) core. This situation is contrary 
to the hypothetical Ih-symmetry case where the outer layer As20 carries  
−1.81e, and the [As@Co12] core −2.19e. For [Sb@Fe12Sb10(Sb5)2]5–,  
the Ih/D5d difference is computed to be 24.3 kcal mol−1, favouring  
the sandwich complex arrangement, with both species favouring a 
spin-state of 7/2, as denoted for D5d species in Supplementary Table 6.  
This energy difference is lower than the calculated one for 1, suggesting 
a more facilitated D5h/Ih interconversion involving 3a and 3b. Similar 
to 1, 3a shows an equatorial Sb10 ring carrying more negative charge 
(−1.49e) than the overall charge from (Sb5)2 fragments (−1.10e), involv-
ing −2.28e ascribed to the [Sb@Fe12] core, which varies between −2.59e 
for the Sb20 outer layer and −2.41e for the [Sb@Fe12] core in the more 
symmetric 3b counterpart.

Taking cluster 1 as an example, the main bonding scheme towards 
the 6π-As5

– rings is revealed via an orbital analysis showing that the 
main interaction is located in low-lying occupied orbitals where the π1-, 
π2- and π3-As5 orbitals are collectively donating charge towards the 4s 
Co orbitals of the core, resulting in their stabilization—behaviour that 
can be ascribed to them being analogues of the 1S, 1P and 1D electronic 
shells (Fig. 3 and Supplementary Fig. 19)39. The high-lying occupied 
orbitals are composed of the partially occupied 3d Co block orbitals,  
leading to the high-spin state. This situation is similar to the one 
described recently for carbonyl platinum clusters by Wei40. The π1-As5 
orbitals interact with the 1S and part of the 1P shell (1Pz) from the central 
core, and the π2- and π3-As5 orbitals interact with a part of 1P (1Px, 1Py) and 
1D (1Dxz, 1Dyz), similar to a classical single-metal sandwich structure, and 
analogous to pentaarsaferrocene. Hence, D5d-[As@Co12@As10(As5)2]4– 
appears to be the first cluster analogue to a sandwich complex based on 
a central icosahedral core as the coordination centre. Neighbour charge 
states, namely –3 and –5, lead to favoured high-spin species (S = 4/2) by 
64.2 and 15.7 kcal mol−1, in comparison to the closed-shell state (S = 0). 

For such species, the bonding towards both As5 rings remains similar 
to the parent –4 charge state due to the fact that frontier orbitals are 
composed of 3d-block orbitals.

To compare the chemical bonding between the coordination cen-
tre and ligands in current sandwich complexes [Pn@M12Pn10(Pn5)2]4–/5– 
(Pn = As, Sb; M = Co, Fe) with classical mononuclear sandwiches 
ferrocene Fe(η5-C5H5)2 (I) and [Ti(η5-P5)2]2– (II), an energy decomposi-
tion analysis (EDA) was performed. The cluster-based coordination 
centre given by [Pn@M12Pn10]n– and the remaining ligands Pn5

– (Pn = As, 
Sb) was employed to study the bonding interactions between the cen-
tral cluster and ligands. The numerical results are presented in Table 1. 
It is noteworthy that the EDA results on [Ti(η5-P5)2]2– are in agreement 
with previous results24. The bond strength between coordination centre 
[Pn@M12Pn10]n– and the ligand Pn5

– is larger than that between Ti0 and P5
– 

in [Ti(η5-P5)2]2– and close to that between Fe2+ and C5H5
– in Fe(η5-C5H5)2. 

For [As@Co12As10(As5)2]4–, the orbital interactions contribute more to 
the metal–ligand bonding than the electrostatic interactions, whereas 
this trend is reversed for [Sb@Fe12Sb10(Sb5)2]5–.

Conclusion
We report the synthesis and characterization of sandwich-type clusters 
[Pn@M12Pn10(Pn5)2]4–/5– (Pn = As, Sb; M = Co, Fe), where the icosahedral  
[Pn@M12] cores are ligand-flanked in analogy to classical mononuclear 
sandwich structures. These clusters are inorganic sandwich-type 
complexes containing a 3D interlayer, which bridge a conceptual gap 
between classical sandwich complexes and cluster-based homologues. 
We anticipate that these clusters may pave the way for the design and syn-
thesis of other sandwich compounds involving a 3D coordination centre, 
providing the possibility of applying these inorganic sandwich-type 
complexes as building blocks, and making it possible to further explore 
their characteristics and ligand–core interplay at the nanometre scale.

Methods
All manipulations and reactions were performed under a nitrogen 
atmosphere using standard Schlenk or glovebox techniques. Ethyl-
enediamine (Aldrich, 99%) and toluene (Aldrich, 99.8%) were freshly 
distilled from sodium/benzophenone. Acetonitrile (Aldrich, 99.8%) was 
distilled from CaH2 under nitrogen and was stored under nitrogen prior 
to use. 18-crown-6, purchased from Sigma-Aldrich (98%), was dried 
in vacuum for 1 day prior to use. DPPF was purchased from Aladdin  
(97%) and was not further processed prior to use. The precursors K5As4 
and K5Sb4 were synthesized by heating stoichiometric mixtures of the 
elements at 650 °C and 850 °C, respectively, for 30 h in sealed niobium 
containers jacketed in evacuated fused silica tubes according to previ-
ously reported synthetic procedures41. Co(PPh3)2Cp was synthesized 
according to a reported method42.

Synthesis of {[K(18-crown-6)]2(en)}2[As@Co12As10(As5)2] (1′)
K5As4 (50 mg, 0.100 mmol) and 18-crown-6 (98 mg, 0.370 mmol) were 
dissolved in 2.5 ml en and stirred at 55 °C for 1 h to yield a greenish-
brown solution. Co(PPh3)2Cp (45 mg, 0.070 mmol) was added and 
stirred vigorously at 75 °C for 4 h. The resulting red-brown solution 
was centrifuged and filtered with standard glass wool, then carefully 
layered by 3 ml toluene. After 3 months, long black plate-like crystals 
of {[K(18-crown-6)]2(en)}2[As@Co12As10(As5)2] were observed in the test 
tube in approximately 14% yield overall.

Synthesis of {K2[K(18-crown-6)](en)2}[K(18-crown-6)]2[As@
Co12As10(As5)2] (2′)
K5As4 (50 mg, 0.100 mmol) and 18-crown-6 (98 mg, 0.370 mmol) were 
dissolved in 2.5 ml en and stirred at 55 °C for 1 h to yield a greenish-
brown solution. Co(PPh3)2Cp (65 mg, 0.100 mmol) was added and 
stirred vigorously at 75 °C for 4 h. The resulting red-brown solution 
was centrifuged and filtered with standard glass wool, then care-
fully layered by 3 ml toluene. After 1 month, black block crystals of 
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{K2[K(18-crown-6)](en)2}[K(18-crown-6)]2[As@Co12As10(As5)2] were 
observed in the test tube in approximately 12% yield.

Synthesis of [K3(18-crown-6)3(en)2][K(18-crown-6)(en)]2[Sb@
Fe12Sb10(Sb5)2]0.745[Sb@Fe12@Sb20]0.255 (3′)
K5Sb4 (95 mg, 0.139 mmol) and 18-crown-6 (100 mg, 0.393 mmol) were 
dissolved in 2.5 ml en and stirred at 60 °C for 0.5 h to yield a brown 
solution. DPPF (38 mg, 0.069 mmol) was added and stirred vigor-
ously at room temperature for 3 h. The resulting red-brown solution 
was centrifuged and filtered with standard glass wool, then carefully 
layered by 3 ml toluene. After 3 weeks, black block crystals of [K3(18-
crown-6)3(en)2][K(18-crown-6)(en)]2[Sb@Fe12Sb10(Sb5)2]0.745[Sb@Fe12@
Sb20]0.255 were observed in the test tube in approximately 15% yield.

X-ray diffraction
Suitable single crystals of the title compounds were selected for X-ray 
diffraction analyses. Crystallographic data were collected on a Rigaku 
XtalAB Pro MM007 DW diffractometer with graphite-monochromated 
Cu Kα radiation (λ = 1.54184 Å). The structures of {[K(18-crown-
6)]2(en)}2[As@Co12As10(As5)2] and {K2[K(18-crown-6)](en)2}[K(18-crown-
6)]2[As@Co12As10(As5)2] were solved using direct methods and then 
refined using SHELXL-2014 and Olex2 to convergence43–45, in which 
all the non-hydrogen atoms were refined anisotropically during the 
final cycles. All hydrogen atoms of the organic molecule were placed 
by geometric considerations and were added to the structure factor 
calculation. Structure refinement details for [K3(18-crown-6)3(en)2]
[K(18-crown-6)(en)]2[Sb@Fe12Sb10(Sb5)2]0.745[Sb@Fe12@Sb20]0.255 and 
all atoms were refined using anisotropic displacement parameters. 
The asymmetric unit contains two crystallographically independent 
half-clusters of [Sb@Fe12Sb10(Sb5)2]5– (3a) and [Sb@Fe12@Sb20]5– (3b). 
A summary of the crystallographic data for the title compounds is 
provided Supplementary Table 1 and selected bond distances are given 
in Supplementary Tables 2–4.

Theoretical methods
Geometry optimizations and subsequent calculations were performed 
with the ADF 2021 code46 with the all-electron triple-ξ Slater basis set 
plus the double-polarization (STO-TZ2P) basis set in conjunction with 
the hybrid PBE0 functional47,48. The bonding interactions were stud-
ied by using an EDA49 together with the natural orbitals for chemical 
valence (NOCV)50,51. The EDA-NOCV calculations were performed by 
using PBE0-D3(BJ) functional47,48,52 with the basis set TZ2P on PBE0/
TZ2P-optimized geometries. The Hirshfeld charge analysis was also 
carried out in ADF 2021 code46.

ESI-MS investigations
Negative-ion-mode ESI-MS of the acetonitrile solution of crystals of all 
samples was performed on an LTQ linear ion trap spectrometer (Agilent 
Technologies ESI-TOF-MS, 6230). The spray voltage was 5.48 kV and 

the capillary temperature was kept at 300 °C. The capillary voltage 
was 30 V. The samples were prepared inside a glovebox and rapidly 
transferred to the spectrometer in an airtight syringe by direct infusion 
with a Harvard syringe pump at 0.2 ml min−1.

EDX
EDX analysis was performed using a field emission scanning electron 
microscope ( JEOL JSM-7800F). Data acquisition was performed with 
an acceleration voltage of 15 kV and an accumulation time of 60 s.

Data availability
Crystallographic data for the structures reported in this Article have 
been deposited at the Cambridge Crystallographic Data Centre, under 
deposition numbers CCDC 2204629 (1′), 2204630 (2′), 2204596 (3′). 
Copies of the data can be obtained free of charge via https://www.
ccdc.cam.ac.uk/structures/. All other data supporting the findings 
of this study are available within the Article and its Supplementary 
Information.
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